US006597809B1

a2 United States Patent

(10) Patent No.: US 6,597,809 B1

Ross et al. 45) Date of Patent: Jul. 22, 2003
(549) ROLLUP FUNCTIONS FOR EFFICIENT 5,774,588 A * 6/1998 Li ccoeereeniineniiiennene 382/230
STORAGE PRESENTATION AND ANALYSIS 5,802,205 A 9/1998 Emico et al. o 382/187
OF DATA 5,805,911 A * 9/1998 Millercccceevevivivnnnne 715/534
5,835,635 A * 11/1998 Nozaki et al. ... e 382/226
(75) Inventors: David Justin ROSS, Redmond, WA 5,963,666 A 10/1999 Fupsakl etal. oooovennne 382/187
(US); Stephen E. M. Billester, Bothell, FOREIGN PATENT DOCUMENTS
WA (US); Brent R. Smith, Redmond,
WA (US) EP 0595064 10/1993 ... GO6F/15/401
. OTHER PUBLICATIONS
(73) Assignee: RAF Technology, Inc., Redmond, WA
(Us) PCT International Search Report dated Jul. 17, 2000 for
Application No. PCT/US00/07518.
(*) Notice: Subject. to any disclaimer,. the term of this Cavnar, W.B., “N-Gram-Based Matching for Multifield
patent is extended or adjusted under 35 Database Access in Postal Applications,” Apr. 26, 1993, pp.
U.S.C. 154(b) by 0 days. 287-297.
. .
(21) Appl. No.: 09/528,749 cited by examiner
- Primary Examiner—Mehrdad Dastouri
(22) Filed: Mar. 20, 2000 (74) Attorney, Agent, or Firm—Stoel Rives LLP
Related U.S. Application Data (57 ABSTRACT
(60) Provisional application No. 60/125,352, filed on Mar. 19,
1999, and provisional application No. 60/125,257, filed on Methods of organizing a series of sibling data entities in a
Mar. 19, 1999. digital computer are provided for preserving sibling ranking
(51) Int. CL7 oo GO6K 9/72; GO6K 9/68; information associated with the sibling data entities and for
GO6K 9/62; GO6K 9/00; G10L 15/04; GO6F 15/00 attaching the sibling ranking information to a joint parent of
(52) US.CL . 382/229: 382/226: 382/228: the sibling data entities to facilitate on-demand generation of
382/187,~ 704/251’. 715/534: ranked parent candidates. A rollup function of the present
(58) Field of Search ’ 382 /,185 186 invention builds a rollup matrix (126) that embodies infor-
382/187188189226228 229, 230 mation about the sibling entities and the sibling ranking
715 /53’0 531. 532 534: 704 /251’ 557 information and provides a method for reading out the
CTT T e ’ ranked parent candidates from the rollup matrix in order of
(56) References Cited their parent confidences (141). Parent confidences are based

4,718,102 A *
5,320,600 A *
5,768,451 A

U.S. PATENT DOCUMENTS

1/1988 Crane et al. 382/185
7/1994 Sanada et al. 704/251
6/1998 Hisamitsu et al. 382/309

on the sibling ranking information, either alone or in com-
bination with n-gram dictionary ranking or other ranking
information.

16 Claims, 11 Drawing Sheets

ci c2 c3 c 2
s
R 1 i i
R4 | | | |
R3 | | | |
R A2 | i ! ;
Ri[fo Al I | L
ROl W]) l !
94 98 kg‘% 0TI 70 TI
92
4
RS ! ! !
R4 | | | I
R3 I ni | | |
Re[a2 | w0 I nd ! :
R o1 | u0 | | |
RO I |] |
70 11 710 711 10 11 T0 71
92
s
RS ! ! ! !
R4 | | t1y |
R3 | nd | t1 | |
R2[a2 ! u0 T nt [t1 T !
R1[o1 | u0 | | |
RO | i | |
100 92
R5] !] 5,17
R4 | |) 5,07//s1)
R3 | nd | L1 507V s 1
R2| a2 | u0 T nt [t1 T 5,07
Ri[o1 | u0 | | i
RO | | | |

U.S. Patent Jul. 22, 2003 Sheet 1 of 11 US 6,597,809 B1

20

FIG. 1 e

C

FIG. 2 A A
“ Ghan
FIG. 5

))
847/ S/ l/l/ ./1/ Ve

A 1 1

R5

R4
(| R3

R2

T — 4

NN N NN

R1

707"
RO

70//C1 /Cz C3 C4
72 . 72

(

82

N\

-

Q)
<

Y

U.S. Patent Jul. 22, 2003 Sheet 2 of 11

DOCUMENT

—32

—1

SCANNING —

et

SEGMENTATION

36

—

RECOGNITION

38

Y

—

DATA
VERIFICATION

|40

(bugpur)

US 6,597,809 B1

FIG. 3

30

U.S. Patent

Jul.

22,2003

Sheet 3 of 11

RECEIV
POS-
SETS

S

SIZE/
ESTABLISH
MATRIX

\

64

FIG. 4

\
LOAD POS-
SETS INTO

MATRIX

\

ROLL-OUT
PARENT
CANDIDATE

DISCARD

"N" FROM

MATRIX

\
DICTIONARY
PROCESS

CANDI?DATES

62

US 6,597,809 B1

US 6,597,809 B1

—~

C3

Sheet 4 of 11

Jul. 22, 2003

FIG. 6A

U.S. Patent

R5
R4

92

92

T7

T1
100 92
¥

/A

5,07)//s1)
i/ s1

T0
T0
S,
5,

0 T1
70 T1
t,1

!
t,1

t,1
t,1

n,1
T1
n,1

n,1
u,0
T0
n,1
u,0

\—gg—"

T1

|
1

94 98
FIG. 6B

R5

T0
0,1
0,1

FIG. 6C

R5

0,1

R2| A2
S NABNY

R3
RO
R4
R3
R2| a,2
R1
RO
R4
R3
R2| a2
R1
RO
R5
R4
R3
R1
RO

FIG. 6D

U.S. Patent Jul. 22, 2003 Sheet 5 of 11 US 6,597,809 Bl

/
/
RS /
fG.7 /
/
. s, 1, _
K R4 J T~100
/ /
/ R3 /
/ 181 100
/ 7
/ /
/ R2 n,1 /
/ /
/ /
/ R1
/
/
/
) RO
/
/ / Ci
/
R5
R4 t1
R3 n,1 t,1
R2 a2 u,0 t1
R1 0,1 u,0
RO
\

C1 Cc2 C3

2N

U.S. Patent

Jul. 22, 2003

Sheet 6 of 11

US 6,597,809 B1

FIG. 8A 100a
C1 C2 C3 112 92
R5 ! ! 16, GO 98
R4 | A8 ARDr—" | 50 | si
R3| 1201 A0 D+—"| t1 | 50 | s,
R2 uo ! n1 t1 | 50 |
M1 o | w0 | ; ;
RO l | | |
gv,__/
C4
F1G. 8B c1 3 C2 C3 - C4 92
R5 ! ! 116! s,1 1000
R4 | 118, AGDT— TG | st
R3| A201 4@ D~—" | t1 | 50 | s,1
R2 u0 ! ni t1 ! 50 !
A1 o || uo | ; |
RO 1 | | |
FIG. 8C
G &2 N S
R5 | ! | s 1100c~
R4 i ; t1 50 | 0
R3 | nt | ——GD 50 | s,1
R2 n,1 t,1 ! 5,0 !
"1 o0 | [w0 | ; ;
RO | | | |
FIG. 8D ct C2 C3 C4
/———&-—\/——‘M——Aﬁ/———&\
R5 ! ! | s,1 1100c~
R4 ; [1 50 | GU
R3 | ni | -G D-——"| 50 | s,1
R2[a2 ! L uo TadDd t1 | 50 |
2(1) u0 | | 1
! | | !

US 6,597,809 B1

Sheet 7 of 11

Jul. 22, 2003

U.S. Patent

<Jauod>
evi— Lt _A__J_L.v ang
<)Xeu>
b | —> <Jswiod>
c_| o 82 m//r wm
<IXaUu>
174 T Zowods e Qmﬁ_oqv
€ [s = 96
] - 26 /
cri o M%MM \n_ <Iaulod>
< >
5 _ S oL Pl A._mﬁm___o > = 0 ANILNOYH
+ vl / 96 ._..DO-n_n_OW_
Xau / ¥ ol ol
SASN AME_OMV <guiod>— [<Jejuiod> N\ NHN.L3Y
EEEE |_ r<lajulod> n <Jayuiod>
9001 | M. 8gl E
op1 <IX8u> N _’ /
v | m+ f’ <Jg)uiod> u / 6 Ol
doolt — 1 \
<ixou> vel 8Ll 921
v <1ajuiod> -L\ mr\v
— | m _ S l.\:N_‘—.
01938 Ny /moo_,

U.S. Patent Jul. 22, 2003 Sheet § of 11

FIG.

10

US 6,597,809 B1

200

210~

RECEIVE POS-SETS FROM OCR SYSTEM

!

212~

ASSEMBLE POS-SETS TO
FORM N-GRAM CANDIDATES

'

214~

DETERMINE LENGTH OF
N-GRAM CANDIDATES

!

216~

PROCESS N-GRAM CANDIDATES
THROUGH N-GRAM DICTIONARY

!

218~

OUTPUT TO N-GRAM ALT-SETS

!

220~

BUILD ROLLUP STRING MATRIX
USING N-GRAM ALT-SETS

!

222~

ROLL-OUT PARENT STRING CANDIDATES

226

'

224~

FILTER PARENT STRING CANDIDATES
USING STRING DICTIONARY

US 6,597,809 B1

Sheet 9 of 11

Jul. 22, 2003

U.S. Patent

M

¢lé
. <Hld>
° NV Am|—.ﬁ_V ALY
. 09¢ - = ~[<JUOD> v _’ " ,_.Y
e [<H | d>H / ;. 9.2~
n__N _~ SAMVVY AE-:&VI_ WAV
i - =<JUOD>| w?}%ﬁv
Yo
= ¢ 31V1S Vo / /

<Hld>) ,/ /2 0.2
e <] d> <l ¥9¢ \ Sy
v | edlz | LT IVIS) Voo

r Am.ﬁn_v] “ //
N [<H1d> L==|<"1d ALID>] |/ "\
| 1dIZ 1 <"ld> ' 7 ‘. _-°)
- 89¢ __ L

PP ¢ 41VIS \.N@N ~IN"NL13d :

v | 2diZ ' <gld> I <dld> |
T | 31VLIS | L==I<H1d ALID> R

<IXN>|<Hld> momL S e
AVEOOV _,&_N |||||

U.S. Patent Jul. 22, 2003 Sheet 10 of 11 US 6,597,809 B1

FIG. 12
ESTABLISH AND LOAD POS-SETS
/— IN CHILD ROLLUP MATRIX
300
Y
/‘ SIZE AND REESTABLISH
PARENT ROLLUP MATRIX

310

\

. BUILD PARENT ROLLUP MATRIX WITH
NODES INCLUDING POINTERS TO ENTRY
320 | POINT(S) OF CHILD ROLLUP MATRIX

|

f— BUILD ROLLUP MATRIX AT NEXT
330 LEVEL IN HIERARCHY

4 ROLL-OUT
340

U.S. Patent Jul. 22, 2003 Sheet 11 of 11

US 6,597,809 B1

FIG. 13 (START)
ACCESS ErllTRY POINT $00
410
OF PARENT MATRIX o /
(PARENT NODE OF LINKED-LIST)
4/60
S
PARENT NODE u
_ INCLUDE POINTER YES| [PARENT NODE
TO N%%[ELIB [g)HILD ‘
ROLL-OUT CHILD
MATRIX CANDIDATE FROM
: 430 NESTED CHILD
450 NO 470| ROLLUP MATRIX
READ ELEMENT STORED
IN PARENT NODE AND PREPEND TO
ADVANGE PREPARED TO PARENT PARENT
TO NEXT CANDIDATE TAIL (| CANDIDATE TAIL
NODE IN 480
LINKED-LIST {
440 RETURN TO
DOES PARENT ROLLUP
PARENT NODE FUNCTION
POINT TO RETURN /
NODE 490

YES

DICTIONARY

500
PROCESS -

y

(OUTPUT)

US 6,597,809 B1

1

ROLLUP FUNCTIONS FOR EFFICIENT
STORAGE PRESENTATION AND ANALYSIS
OF DATA

RELATED APPLICATIONS

This application claims the benefit under 35 U.S.C. §119
(e) of U.S. Provisional Patent Application Nos. 60/125,257
and 60/125,352, both filed Mar. 19, 1999.

TECHNICAL FIELD

The present invention relates to computer-implemented
methods and data structures for producing candidate parent
entities that are ranked in accordance with ranking informa-
tion associated with given child entities and, in particular, to
such methods for use with software parsers and data
dictionaries, for example, of the kind utilized in a system for
automated reading, validation, and interpretation of hand
print, machine print, and electronic data streams.

BACKGROUND OF THE INVENTION

Optical character recognition (OCR) systems and digital
image processing systems are known for use in automatic
forms processing. These systems deal with three kinds of
data: physical data, textual data, and logical data. Physical
data may be pixels on a page or positional information
related to those pixels. In general, physical data is not in a
form to be effectively used by a computer for information
processing. Physical data by itself has neither useable con-
tent nor meaning. Textual data is data in textual form. It may
have a physical location associated with it. It occurs in, for
example, ASCII strings. It has content but no meaning. We
know what textual data says, but not what it means. Logical
data has both content and meaning. It often has a name for
what it is.

For example, there may be a region of black pixels in a
certain location on an image. Both the value of the pixels and
their location are physical data. It may be determined that
those pixels, when properly passed through a recognizer,
say: “(425) 867-0700” Content has been derived from the
physical data to generate textual data. If we now know that
text of this format (or possibly at this location on a pre-
printed form) is a telephone number, the textual data
becomes logical data.

To facilitate reconciliation of imperfections in physical
data and shortcomings of the recognition process, each
recognized element of textual data, e.g., a character, may be
represented by a ranked group of unique candidates called a
“possibility set.” A possibility set includes one or more
candidate information pairs, each including a “possibility”
and an associated confidence. In the context of an OCR
system, the confidence is typically assigned as part of the
recognition process. For computational efficiency, the con-
fidences may be assigned within an appropriate base-2
range, e.g., 0 to 255, or a more compact range, such as 0 to
7. For example, FIG. 1 shows an enlarged view of an
individual glyph 20 that may be physically embodied as a
handwritten character or as a digital pixel image of the
handwritten character. From glyph 20, an optical character
recognition process may generate the possibility set shown
in TABLE 1 by assigning possibilities and associated con-
fidences:

10

15

20

25

30

35

40

45

50

55

60

65

TABLE 1
possibility confidence
c 200
e 123
o 100

FIG. 2 shows a series of sibling glyphs 22, which are
known as “siblings” because they share the same parent
word 24. The sibling glyphs 22 can be represented by the
four possibility sets as shown in the following TABLE 2:

TABLE 2
poss conf poss conf poss conf poss conf
c 200 h 190 o 100 r 125
o 150 n 100 a 80 n 100
€ 100 T 80

The possibilities of these four possibility sets can be readily
combined to form 36 unique strings: “chor”, “ohor”, “ehor”,
“cnor”, “cror”, etc. The number of unique strings is deter-
mined by the product of the number of character possibilities
in each possibility set, i.e., 3x3x2x2=36.

To gage or verify their accuracy, the unique “candidate”
strings may be processed by a “dictionary” of valid out-
comes. In the context of OCR, a dictionary is a filter. It has
content and rules. Each candidate string processed by the
dictionary is subject to one of three possible outcomes: it is
passed, it is rejected, or it is modified into a similar string
that passes. One example of a dictionary is based on the
English language. For parent word 24 of FIG. 2, the candi-
date strings “chor” and “ehar” would be rejected by such a
dictionary, while “char” would be passed.

Because dictionaries often have a very large amount of
content against which a candidate string is compared, it may
be unduly time-consuming to apply the dictionary to all
possible strings. To improve efficiency, it is desirable, before
applying a dictionary, to rank the candidate strings in order
of some confidence based on the accuracy of recognition. In
this way the candidate strings having the highest confidence
of having been accurately recognized are processed by the
dictionary first. Rules can then be used to determine when to
stop dictionary processing, e.g., when enough candidate
strings have been processed to have isolated the best can-
didate strings (with a certain probability). A convenient way
to rank candidate strings is to calculate string confidences
based on the confidences of the component character pos-
sibilities that make up each candidate string. A set of
candidate strings and their associated string confidences is
referred to as an “alt-set.”

One way to rank parent candidates for creating an alt-set
is to add the child confidences for each parent candidate. In
the above example, “chor” would have a ranking of 615 (the
sum of the confidences associated with the individual char-
acters c-h-o-1), “ohor” would have a ranking of 565, “ehor”
would have a ranking of 515, etc. Combining the possibility
sets to form the 36 unique strings and to calculate their
rankings is simple in this example. However, there is no
obvious way to read the strings out in ranked order. The
strings must first be assigned a ranking, then ordered or
sorted based on their assigned rank. This ordering or sorting
step becomes especially problematic for longer strings
formed from sibling possibility sets having a greater number
of possibilities. By way of illustration, a hypothetical
10-character parent word in which each child possibility set

US 6,597,809 B1

3

includes 10 possibilities would result in 10 billion unique
strings. It would be a very time-consuming and computa-
tionally expensive task to rank and order 10 billion
10-character strings.

Another known way of improving the efficiency of dic-
tionaries is to use specialized dictionaries that contain
smaller amounts of content than a more generalized dictio-
nary but that are limited in their application. One such
specialized dictionary is an “n-gram” dictionary, which
includes information about the frequency in which certain
character sequences (e.g., two-letter, three-letter, etc.) occur
in the English language. For example, the two-letter com-
bination “Qu” (a 2-gram) occurs in English words much
more frequently than “Qo.” To benefit from an n-gram
dictionary, the confidence assigned to an n-gram is some
combination of (1) the aggregate character confidences and
(2) the n-gram frequency provided by the n-gram dictionary.
Thus, recognition may have produced Oueen and Queen
where the first character has the possibility set: poss=0,
conf=200; poss=Q, conf=100, but in the English language
“Qu” happens much more often than “Ou”, so the 2-gram
dictionary would help determine that Queen is the more
likely parent string.

A need exists for a method of generating candidate strings
in ranked order on an as-needed basis and, more generally,
for a method of generating ranked parent candidates on an
on-demand basis from a series of sibling possibilities. A
need also exists for such a method that can be used with data
at different logical levels in a logical data hierarchy, such as
n-grams, words, and phrases.

SUMMARY OF THE INVENTION

In accordance with the present invention, methods of
organizing a series of sibling data entities are provided for
preserving sibling ranking information associated with the
sibling data entities and for attaching the sibling ranking
information to a joint parent of the sibling data entities to
facilitate on-demand generation of ranked parent candidates.
A rollup function of the present invention builds a rollup
matrix containing information about the sibling entities and
the sibling ranking information and provides a method for
reading out the ranked parent candidates from the rollup
matrix in order of their parent confidences, which are based
on the sibling ranking information. Parent confidences may
also be based, in part, on n-gram ranking or other ranking
information.

External to the rollup function of the present invention,
sibling entities are generated and passed to the rollup
function for processing. Generation of a series of sibling
entities may, in the context of OCR, involve optical
scanning, recognition processing, and parsing. Each sibling
entity comprises one or more ranked child possibilities, each
having an associated child confidence. The number of child
possibilities in a sibling entity is referred to as the “child
population” of the sibling entity. Each sibling entity may
include a range of child confidences, one of which is the
maximum child confidence.

In one aspect of the invention the rollup function is
implemented in computer software operable on a digital
computer. The rollup matrix is modeled as a three-
dimensional data array called a rollup table. The rollup table
serves as a convenient visual aid to understanding the nature
of the rollup matrix and operation of the rollup function.
What is the matrix? It should be understood that nothing in
the foregoing description of the rollup table should be
construed as limiting the scope of the invention to imple-
mentation of the rollup matrix in data arrays. Other data

10

15

20

25

30

35

40

45

50

55

60

65

4

structures, such as linked lists, are also suitable for imple-
menting the rollup function of the present invention. It
should be understood, therefore, that the term “rollup
matrix” as used herein shall mean data tables, linked lists,
and any other device for defining relationships between
nodes in a data structure, where such nodes include one or
more elements of data and one or more relationships to other
nodes, procedures, or nested rollup functions. Furthermore,
it will be apparent from the foregoing description of the
invention that while the invention is suitable for use with
OCR technology, it is also suitable for use with processing
of other types of content-bearing data in which uncertainty
in the data content is sought to be resolved. Non-OCR
applications of the invention involving resolution of empiri-
cal uncertainty may include, for example, bioinformatics
systems for analyzing gene sequencing information.

After receiving a series of sibling data entities, a matrix
initialization routine of the rollup function establishes a
rollup table and sizes it based on properties of the sibling
entities. In particular, the rollup table is sized to include a
series of “columns” equal in number to the number of sibling
entities received. The dimension of the rollup table spanned
by the columns is referred to as the “width” of the table. The
rollup table is sized in a “height” dimension based on a
number of “rows,” with each having a row position indi-
cating its position along the height dimension of the data
table. The number of rows, and consequently the height of
the table, is based on the sum of the maximum child
confidences of the sibling entities. In practice, the number of
rows may be established as equal to the sum of the maxi-
mum child confidences plus one. The rollup table is sized in
a “depth” dimension based on the largest of the child
populations of the sibling entities. The rollup table is a
collection of “nodes,” each located in the rollup table at a
position defined by column, row position, and a depth
position in the depth dimension.

Once the rollup function has established the rollup table,
a loading routine of the rollup function then loads the sibling
entities into the rollup table in a predetermined loading
sequence beginning with loading a first sibling entity in a
first column of the series of columns. Each sibling entity is
loaded in sequence, from the first sibling entity to the last
sibling entity in the series. If the sibling entities have no
serial relationship, then an arbitrary, but ordered sequence of
loading is chosen. Each child possibility of the first sibling
entity is loaded into a node of the rollup table located at the
first column and at the row having a row position corre-
sponding to the child confidence of the child possibility
being loaded. The rollup function then proceeds to load the
second sibling entity in the series in a second column. For
the second and each subsequent sibling entity and column,
the rollup function loads each child possibility in one row of
the current column for each row of the immediately preced-
ing column having a filled node. The child possibilities of
the second sibling entity are loaded in rows of the second
column that have row positions offset from the row positions
of filled nodes of the immediately preceding column (i.e.,
the first column) by an offset amount corresponding to the
child confidence of the child possibility being loaded in the
second column. The child possibilities of the third sibling
entity are loaded in rows of the third column having row
positions offset from the row positions of filled nodes of the
second column by an offset amount corresponding to the
child confidence of the child possibility being loaded in the
third column, and so on, until the last sibling entity has been
loaded in the last column of the rollup table. Each entry in
the last column of the rollup table is a terminal element. Due

US 6,597,809 B1

5

to different confidence values that may be associated with
multiple child possibilities of each of the sibling entities, the
loading sequence may result in the loading of multiple
elements in a particular column and row position. During
loading, if a node has already been filled with a child
possibility, the loading routine offsets in the depth of the
rollup table until it reaches an unoccupied node, then fills
that node.

Upon completion of the loading sequence, another aspect
of the invention involves a roll-out routine of the rollup
function, which may be used to read parent candidates from
the rollup table according to their parent confidences. The
reading of parent candidates, known as “roll-out,” begins
with a terminal element known as an entry point. Each
parent candidate is assembled in a sequence opposite the
sequence in which the rollup table was loaded, as follows:
After reading a terminal element from the last column, the
roll-out routine then reads a next-to-last element from the
node located at a next-to-last column immediately preceding
the last column and at a row position less than the row
position of the entry point by an amount equal to the child
confidence associated with the terminal element. The next-
to-last element is then prepended to the terminal element to
form a string tail. A prefix element is read from a node
located in the column immediately preceding the next-to-last
column and at a row position less than the node of the
next-to-last element by an amount equal to the confidence of
the next-to-last element. The prefix element is then
prepended to the string tail. If the sibling entities forming the
rollup table have no serial relationship, then prepending
involves combining the elements in reverse order of their
loading in the rollup table. This reading process is repeated
until the roll-out routine reaches the first column, complet-
ing roll-out of the parent candidate. If more than one element
is located at a particular column and row location (i.e.,
elements are stored at more than one depth position), then
the roll-out routine will continue reading parent candidates
beginning from the same entry point until elements at all
occupied nodes at all depths in the appropriate columns and
rows have been read and all parent candidates having the
same parent confidence have been rolled out, or until the
desired number of parent candidates have been rolled out.
The roll-out process is merely repeated for further parent
candidates.

The method of loading the data table dictates that each
row position corresponds to the parent rank of each parent
candidate assembled from a terminal element located at that
row position. The parent candidate (or candidates) with the
greatest parent confidence may be read from the rollup
matrix by beginning at a maximal node located at the last
column and at the row of greatest row position.
Consequently, parent candidates may be read in decreasing
order of parent rank by merely assembling parent candidates
in sequence, beginning with terminal element(s) located at
the maximal node and continuing to read from the rollup
table at entry points of decreasing row position until all
parent candidates have been assembled. The process of
building a rollup matrix and rolling-out parent candidates to
form alt-sets can be repeated at each level in the data
hierarchy. If desired, rollup functions can be nested by
storing a nested “child” rollup function pointer at a node of
a parent roll-up table.

Given the foregoing description of the invention, the use
of software counters to facilitate the loading of the rollup
matrix and the roll-out of parent candidates will be under-
stood by those skilled in the art.

In another aspect of the invention, the rollup matrix is
established in a computer memory using a plurality of

10

15

20

25

30

35

40

45

50

55

60

65

6

memory pointers in place of the 3-dimensional data array of
the rollup table. In this aspect of the invention, the terms
“rows” and “columns” are arbitrary but are used herein to
denote memory locations within the rollup matrix. In reality,
each node of the rollup matrix includes a pointer to other
nodes which contain a child possibility of an adjacent sibling
entity. If a node must point to more than one child
possibility, as in the case of multiple child possibilities at a
particular column and row position, the node will include
multiple pointers. When these multi-pointer nodes are
encountered by the roll-out routine, a branch is indicated so
that all pointers of each node are followed before moving to
the next entry point.

Nodes occupying entry points shall be referred to as
“entry nodes.” Entry nodes further include a parent confi-
dence which the roll-out routine recognizes as assigned to
the parent candidate assembled beginning with the entry
node. Entry nodes may also include a pointer to the next
entry node in the matrix, which may have the same parent
confidence or a lesser parent confidence. Nodes in the “first
column,” loaded with a child possibility of the first possi-
bility set, may include a return pointer that may direct the
roll-out routine to output the completed parent candidate for
verification (e.g., using a dictionary) or to proceed to the
next entry node for generation of the next parent candidate.
Nodes at any location in the rollup matrix may also include
a pointer to an entry node of a nested rollup matrix.

In yet another aspect of the invention, n-gram possibility
sets are generated using an n-gram rollup function in accor-
dance with the present invention. Comparison of parent
candidate n-grams against an n-gram dictionary allows
n-gram candidates to be weighted in accordance with their
relative frequencies of occurrence in the context of, for
example, the English language. Possibility sets including
n-grams are readily accommodated in establishing the rollup
matrix. For 3-grams, the nodes are loaded with the 3-grams
at a row position which is the aggregate of the confidence of
the central character (of the 3-gram) and the dictionary-
provided frequency of the 3-gram. In this aspect of the
invention, child possibilities in the first and last columns of
the rollup matrix must be prepended and appended,
respectively, with nulls (or spaces) so that all child possi-
bilities are 3-grams. Further, the 3-gram child possibilities
must be loaded in the rollup matrix so that when the parent
candidates are rolled-out, all adjacent 3-grams assembled in
a parent candidate share two characters. For example, “out”
in the first column will fit with “uts” in the second column,
but not with “nts.”

In the context of OCR, the rollup function of the present
invention is useful at every level of textual hierarchy. Rollup
functions also avoid fatal problems often encountered by
prior art string generators, which create strings from a series
of possibility sets. Existing string generators suffer from
three major problems. First, they are combinatorically
expensive in memory use—needing a place in memory for
each possible string. Second, string generators must trim
strings before generating all possible strings because of
limited space to store the combinatorically-many strings.
Therefore, it is possible for string generators to result in
higher-confidence strings being abandoned while lower-
confidence strings are preserved. Third, string generators do
not guarantee that strings of the same confidence, once
ordered, retain that order.

The present invention gets around all these-problems in a
natural way. First, the rollup function is only geometrically
expensive of memory, not combinatorically. Tables gener-
ated by prior art systems grow as Lxn®, where n is the

US 6,597,809 B1

7

number of possibilities per possibility set and L is the
number of possibility sets (i.c., the string length). There are
n” strings of length L that can be generated. By comparison,
the rollup matrix of the present invention grows as
2xCF,, . .xL?, where CF,, . is the highest confidence value in
any possibility set. A significant savings over prior art
systems. For L=10, n=3, and CF,, =20, and allowing 1 byte
per ASCII character, approximately 590,490 bytes would be
required for ranking tables of prior art systems; while only
12,000 bytes are required for the rollup matrix—a savings of
98%. Second, candidate strings can be read out of a rollup
table in their decreasing order of confidence without having
to store unneeded strings in memory, while never skipping
a higher-confidence parent candidate for a lower confidence
one. The rollup matrix does not change size with the number
of generated strings. Therefore, all strings are preserved and
there is no trimming of strings ever required. Third, no
reordering of parent strings ever takes place because the
rollup matrix is unchanging. Consequently, strings of the
same confidence remain in their original order.

Parent candidates can be read from the rollup matrix in
decreasing or increasing order of parent confidence. First, a
parent candidate having a desired confidence value can
easily be selected from the matrix by a confidence stored in
association with an entry node of the parent candidate.
Parent candidates having lesser (or greater) confidences can
then be read until a desired lesser (or greater) confidence
level is reached. This process can be repeated until a
predetermined number of parent candidates have been
obtained or until all possible parent candidates have been
rolled-out. The rollup function can be interrupted while
reading out a parent candidate to handle some other process,
such as verifying the most recently rolled-out parent candi-
date using a dictionary. The rollup function easily returns to
where it left off in the rollup matrix to read out the
next-ranked parent candidate by returning to the location in
the rollup matrix that was being accessed when the inter-
ruption occurred. The rollup function of the present inven-
tion provides the above-described benefits without requiring
the production of all of the parent candidates before subse-
quent ranking. If a particular child possibility occurs with at
most one confidence value in a possibility set, then the last
rolled-out string is the pointer structure. Even in the case of
allowed duplication, returning to the rollup function is as
simple as storing a pointer to the next entry point in the
rollup matrix and storing a pointer to each position of the
table, which may be accomplished by freezing the internal
pointer structure.

The rollup function of the present invention is, of course,
not limited to strings. Any parent entity can receive rollup-
produced alt-sets from its child entities. For example, gene
sequence information prepared from a human, an animal, a
plant, or any other living organism may be parsed into its
nucleotides, each of which may be represented by an alt-set.
Sibling nucleotide alt-sets can then be loaded into a rollup
matrix for the parent gene. In this way, the frequency of
naturally-occurring nucleotide and coding sequence varia-
tions can easily be represented by the child confidences
associated with child possibilities of each alt-set. Inaccura-
cies inherent in the gene sequencing process can be similarly
represented by the child confidences.

Additional aspects and advantages of this invention will
be apparent from the following detailed description of
preferred embodiments thereof, which proceeds with refer-
ence to the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an enlarged view of a hand printed glyph;
FIG. 2 is an enlarged view of a series of sibling glyphs;

10

15

20

25

30

35

40

45

50

55

60

65

8

FIG. 3 is a flow diagram depicting an OCR process for
scanning, parsing, and recognizing handwritten data to cre-
ate possibility sets for use with a data verification routine of
the present invention;

FIG. 4 is a flow diagram showing detail of the data
verification routine of FIG. 3 including a rollup function and
dictionary routine in accordance with a preferred embodi-
ment of the present invention;

FIG. 5 is a pictorial view of a three-dimensional data array
in accordance with a first preferred embodiment of the
present invention;

FIGS. 6A, 6B, 6C, and 6D are two-dimensional pictorial
views of a rollup matrix in accordance with the present
invention showing a loading sequence for loading the alt-
sets of Table 3 into the rollup matrix;

FIG. 7 is an exploded three-dimensional view of the
loaded rollup matrix of FIG. 6D;

FIGS. 8A, 8B, 8C, and 8D show a sequence of rolling out
a parent candidate from the loaded rollup matrix of FIG. 6D,

FIG. 9 is a diagram of an alternative embodiment of the
rollup matrix of FIG. 6D including a linked list implemented
in a computer memory;

FIG. 10 is a flow diagram showing steps taken in prepa-
ration and validation of n-gram alt-sets for loading in a
rollout matrix for a parent string of the n-grams;

FIG. 11 is a two-dimensional pictorial view showing
nested rollup matrices;

FIG. 12 is a flow diagram showing steps for establishing
and loading of the nested rollup matrices of FIG. 11; and

FIG. 13 is a flow diagram showing parent candidates
being rolled out from the nested rollup matrices of FIG. 11.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

FIG. 3 is a flow diagram of an OCR process 30 in
accordance with a first preferred embodiment of the present
invention. With reference to FIG. 3, a document 32 bearing
physical textual data is scanned using an optical scanner 34,
which produces a digital pixel image of the physical data on
document 32. A segmentation process 36 of OCR process 30
receives the pixel image from the optical scanner and
segments the pixel image into data segments for processing
by a recognizer 38. Recognizer 38 analyzes the data seg-
ments to produce a possibility set (“pos-set”) for each data
segment. Empirical uncertainty in the physical data and
inaccuracies of the scanning, segmentation and recognition
process are represented in the pos-sets by including multiple
child possibilities in each pos-set and by assigning child
confidences to the child possibilities. For example, recog-
nizer 38 separates a parent string (as in parent word 24 of
FIG. 2) into its sibling glyphs and outputs a pos-set for each
glyph. The pos-sets are output to a data verification routine
40, which uses a rollup function 60 (FIG. 4) and possibly
one or more dictionaries 150 (FIG. 4) in accordance with the
present invention.

FIG. 4 is a flow diagram of rollup function 60 of data
verification routine 40 (FIG. 3). With reference to FIG. 4, a
matrix initialization routine 62 of rollup function 60,
receives pos-sets 64 from recognizer 38. FIG. 5 is a pictorial
view of a three-dimensional data array 66, which represents
a data matrix in accordance with the present invention. Data
array 66, includes rows 70, columns 72, and tiers 74 that
together form nodes 76. With reference to FIGS. 4 and 5,
matrix initialization routine establishes a size of data array

US 6,597,809 B1

9

66 based on pos-sets 64. For purposes of a simple
illustration, TABLE 3 presents four sibling pos-sets.

TABLE 3
poss conf poss conf poss conf poss conf
a 2 n 1 t 1 s 1
o 1 u 0 5 0

A first pos-set shown in TABLE 3 includes two child
possibilities, “a” and “0”, which are assigned child confi-
dences 2 and 1, respectively. A second pos-set includes child
possibilities n and u, having associated child confidences 1
and 0, respectively. And so on. The matrix initialization
routine calculates a sum of the maximum confidences of the
four pos-sets (2+1+1+1=5) and adds one (5+1=6) to estab-
lish a height 80 of data array 66. Data array 66, thus,
includes six rows 70, having row heights R0, R1, R2, R3,
R4, and RS. A width 82 of data array 66 is equal to the
number of pos-sets 64. A depth 84 of data array 66 is equal
to the largest number of child possibilities in any of the
pos-sets 64. In this example, three of the pos-sets are equally
large, having two child possibilities.

Once data array 66 has been established and sized, a
loading routine 90 of rollup function 60 loads pos-sets 64
into data array 66. FIGS. 6A, 6B, 6C, and 6D depict a
loading sequence followed by loading routine 90. With
reference to FIG. 6A, a data table 92 provides a two-
dimensional representation of the three-dimensional data
array 66 of FIG. 5, including four columns C1, C2, C3, and
C4, each of which is divided by broken lines to indicate tiers
74 of data array 66 (FIG. 5). Loading routine 90 loads the
child possibilities 94 of the first pos-set into the first column
C1 so that each child possibility 94 is loaded in a node 96
at a row position equal to the child confidence 98 corre-
sponding to child possibility 94. Thus, child possibility “0”,
which has an associated child confidence of one is loaded at
the node located at row R1, and child possibility “a” is
loaded at row R2 because it has an associated child confi-
dence of two.

When loading routine 90 completes loading of the first
pos-set (FIG. 6A), it proceeds to load the second pos-set into
data table 92. With reference to FIG. 6B, each child possi-
bility of the second pos-set is loaded in one node 96 of the
second column (C2) for each row of the first column (C1)
having filled nodes, but at a row height greater than the row
height of the filled nodes 96 of column C1 by an amount
equal to the child confidences being loaded. Thus, child
possibility “u” having a child confidence of zero is loaded in
nodes located at rows R1 and R2 of column C2, since rows
R1 and R2 are filled in column C1. Child possibility “n” is
loaded in nodes located at rows R2 and R3 of column C2,
which are greater than the row positions of the filled nodes
(R1 and R2) of column C1 by an amount equal to the child
confidence (one) associated with child possibility “n”.
Because the node located at C2, R2, T0, is already filled with
child possibility “u”, loading routine 90 loads child
possibility, “h” at node C2, R2, T1 so that no more than one
child possibility is loaded in each node.

Loading routine 90 then continues to load successive
pos-sets 64 in sequence in successive columns, as depicted
in FIGS. 6C and 6D, until all pos-sets 64 have been loaded
in data table 92. As in column C2, child possibilities 94 are
loaded in nodes 96 located at row positions that are greater
(by an amount equal to the child confidence of the child
possibility being loaded) than the row position(s) of rows of
the immediately preceding column that have filled nodes.

10

15

20

25

30

35

40

45

50

55

60

65

10
Nodes of the last column (C4) that are loaded with child
possibilities contain data entities that are known as terminal
elements 100.

FIG. 7 is an exploded view of the loaded data table 92 of
FIG. 6D showing its loaded data in a three-dimensional
representation in accordance with three-dimensional data
array 66 of FIG. 5.

To extract parent candidate strings from data table 92, a
roll-out routine 110 of rollup function 60 is provided (FIG.
4). FIG. 8A depicts the steps taken by roll-out routine 110,
in rolling out parent candidate “ants”, i.e., the parent can-
didate comprising the sibling characters “a”, “n”, “t”, and
“s”. Parent candidate “ants” has the greatest aggregate
confidence of any of the parent candidates because its
terminal element (“s”) 100 is located in the row of data table
92 having the greatest row position (RS), i.e., a maximal
terminal element 112. With reference to FIG. 8A, roll-out
routine 110 reads from columns C4, C3, C2, and C1, in the
order opposite to which the columns were loaded. Terminal
element “s” 100 (which is also the maximal terminal ele-
ment 112) is read initially. Next, roll-out routine 110 reads
next-to-last child element “t” 116 from the immediately
previous column (C3) and from row R4, which has a row
position less than the row position of terminal element “s”
by the amount of the child confidence associated with
terminal element “s” (i.e. one). Roll-out routine 110
prepends next-to-last child element “t” to the terminal
element “s” to form a string tail of “ts.” The child confidence
of one associated with next-to-last child element “t” 116
then directs roll-out routine to read prefix element “n” 118
from row R3, column C2 (because row R3 has a row
position one less than the row position of R4). Roll-out
routine 110 prepends prefix element “n” 118 to the string tail
“ts”, to form the-partial string “nts.” Element “a” 120, is
then read because it is loaded in row R2, which is one less
(the child confidence associated with prefix element “n”
118) than the row position of prefix element “n” 118.
Element “a” 120 is prepended to complete the formation of
candidate parent string “ants”. The parent confidence asso-
ciated with “ants” is equal to five, which is the row position
of the terminal element 100a used to extract “ants”.

FIG. 8B depicts the steps taken by roll-out routine 110, in
rolling out parent candidate “ant5”. With reference to FIG.
8B, terminal element “5” has an associated child confidence
of zero, which directs roll-out routine 110 to read next-to-
last element “t” from the same row position (R4) in column
C3. The parent confidence associated with “ant5” is equal to
four, which is the row position of terminal element “5” 1005
used to extract “ant5”.

FIGS. 8C and 8D depict the steps taken by roll-out routine
110, in rolling out respective parent candidates “auts” and
“onts.” Because there are two entries in row R2, column C2,
roll-out routine 110 rolls out two unique parent candidates
ending with terminal element “s” 100c¢, both having an
associated parent confidence of four, which is equal to the
row height of row R4, where terminal element “s” 100c is
located.

In accordance with an alternative embodiment of the
present invention, FIG. 9 shows the loaded data table 92 of
FIGS. 6D and 7 embodied as a linked-list rollup matrix 126.
With reference to FIG. 9, rollup matrix 126 includes a
pointer structure 128 to nodes 96. To roll-out the parent
candidate “ants”, roll-out routine 110 starts at an initial entry
point 130 that includes terminal element 100a (element “s”
of maximal terminal element 112). Roll-out routine 110 then
reads out elements “t” 116, “n” 118, and “a” 120 by

US 6,597,809 B1

11

following respective pointers 134, 136, and 138 and
prepends them to element “s” 100a. A return pointer 140
indicates to roll-out routine 110 that it has completed con-
struction of the parent candidate. A parent confidence 141 of
the parent candidate “ants” is stored in association with the
terminal element “s” 100a. All terminal elements of rollup
matrix 126 serve as entry points 142 for rolling out one or
more parent candidates. As in the roll-out sequences shown
in FIGS. 8C and 8D, two parent candidates can be rolled out
of rollup matrix 126 by beginning with terminal element “s”
100c. A branch node 144 of rollup matrix 126 includes two
pointers 146, 148, which indicate to roll-out routine 110 that
two different parent candidates use branch node 144 and that
roll-out routine 110 needs to execute a branch at branch node
144. Those skilled in the art will understand that more than
one branch node may clearly exist in rollup matrix, and that
some branch nodes will have more than two pointers (if the
matrix is “deeper” than two tiers).

After rolling out of each parent candidate (typically in
decreasing order of parent confidence), rollup function 60
may output each parent candidate to a dictionary routine 150
(FIG. 4) for validation using an appropriate parser and
dictionary. One embodiment of handling dictionary process-
ing is shown in FIG. 4, and includes conditional iteration of
roll-out routine 110. An iteration step 154 is conditional
upon whether the parent candidate output by roll-out routine
110 passes the dictionary test (160) and, if it does, whether
some other stop limit 170 has been met. For example, stop
limit 170 may trigger OCR process 30 (FIG. 3) to terminate
verification of the parent element represented by rollup
matrix 126 (and rollup table 92), and to load the next series
of pos-sets scanned and recognized from document 32.

FIG. 10 is a flow diagram showing steps taken in prepa-
ration and validation of n-gram alt-sets for loading in a
rollout matrix for a parent string of the n-grams. With
reference to FIG. 10, an n-gram verification process 200
receives pos-sets from OCR system (step 210) and
assembles them in computer memory to form a ranked list
of n-gram candidates (step 212). N-gram candidates within
a single ranked list may have different lengths, for example
when one of the pos-sets includes both an “m” possibility
and an “rn” possibility. To accommodate n-gram candidates
having different lengths, a length gage routine 214 of n-gram
verification process 200 determines the length of each
n-gram candidate. The n-gram candidates are then processed
by an appropriate n-gram dictionary 216. N-gram dictionary
216 is a specialized dictionary or collection of specialized
dictionaries that includes information about frequency of
occurrence of n-grams (for example 2-grams, 3-grams, etc.)
in written language or some subset of written language.
N-gram dictionary 216 assigns an n-gram confidence to each
n-gram candidate based on (i) the dictionary frequency
rating for the n-gram and (ii) a child confidence associated
with a central character of the n-gram candidate. N-gram and
its associated n-gram confidence are then appended to an
n-gram alt-set (step 218). Steps 214, 216, and 218 are then
repeated until all of the lists of n-gram parent candidates
have been processed through the dictionary and output as
n-gram alt-sets. After all n-gram alt-sets have been
completed, a string-sized rollup matrix is built using the
alt-sets as sibling entities (step 220). Parent string candidates
can then be rolled out of string-sized rollup matrix in ranked
order (step 222) and processed using a string dictionary (step
224) before outputting ranked parent strings (step 226).

FIG. 11 is a two-dimensional pictorial view showing
nested rollup matrices 240 established in accordance with
the present invention. With reference to FIG. 11, nested

10

15

20

25

30

35

40

45

50

55

60

65

12

rollup matrices 240 include a child rollup matrix 250 nested
within a parent rollup matrix 260. Child rollup matrix 250 is
said to be “nested” because complete candidates that may be
rolled out of child rollup matrix 250 are referenced by
pointers within parent rollup matrix 260. In this example,
child rollup matrix 250 represents candidate city names in a
typical rollup matrix in accordance with the present inven-
tion. However, any child entity can be represented in a
nested child rollup matrix. Parent rollup matrix 260 is a
typical rollup matrix in accordance with the present inven-
tion. In this example, parent rollup matrix 260 includes
sibling city, state, and zip-code alt-sets. First and second city
nodes 262, 264 of parent rollup matrix 260 include respec-
tive first and second city pointers 266, 268 to respective first
and second entry points 270, 272 of child rollup matrix 250.
First and second entry points 270, 272 are terminal nodes of
child rollup matrix 250 having associated city confidences
274, 276. While the nested rollup matrices 240 of FIG. 11
include only one nested child matrix, it would be straight-
forward to nest multiple child matrices within a single parent
rollup matrix. Likewise, it would be simple to create a
hierarchy of nested rollup matrices including three or more
layers of rollup matrices, rather than the two layers (child
rollup matrix 250 and parent rollup matrix 260) of FIG. 11.

In setting up nested rollup matrices 240, child rollup
matrix 250 is established before establishing parent rollup
matrix 260. This order of establishing nested rollup matrices
240 ensure that city confidences 274, 276 of child rollup
matrix 250 may be taken into account when establishing,
sizing, and loading parent rollup matrix 260. When loading
first and second city pointers 266, 268 in parent rollup
matrix 260, city confidences 274, 276 of child rollup matrix
250 determine how parent rollup matrix 260 is loaded.

FIG. 12 is a flow diagram showing steps for establishing
and loading of the nested rollup matrices of FIG. 11. With
reference to FIG. 12, a child rollup matrix is first established
and loaded (step 300). Once loaded, entry points for child
candidates of the child rollup matrix, and their associated
child confidences are available. These child candidates,
entry points, and child confidences are then taken into
account in establishing and sizing parent rollup matrix (step
310). Parent rollup matrix is then loaded (step 320). In the
example of FIG. 11, parent rollup matrix 260 is loaded with
a zip-code (postal code) alt-set in its terminal column and a
state alt-set in its next-to-last column. Parent rollup matrix
260 also loaded with city pointers 266, 268 to appropriate
entry points 270, 272 of child rollup matrix 250. After parent
rollup matrix 260 has been loaded (step 320), ranked parent
candidates may then be rolled out (step 330) for processing
by a dictionary. The dictionary required for use with the
nested rollup matrices 240 shown in the example of FIG. 11
is a city-state-zip dictionary for verifying specific city-state-
Zip combinations.

FIG. 13 is flow diagram showing a sequence of steps for
rolling out a parent candidate from the nested rollup matri-
ces 240 of FIG. 11. With reference to FIG. 13, a nested
roll-out routine 400 starts at an entry point, which is a
terminal parent node of a linked list of parent matrix (step
410). All subsequent steps shown in FIG. 13 are identical
regardless of whether the current node is a terminal node or
another node of nested rollup matrices 240. Nested roll-out
routine 400 next determines whether the parent node
includes a pointer to a nested child matrix (step 420). If not,
then nested roll-out routine 400 reads the element stored in
the current node (step 430) and prepends it to a parent
candidate tail. Nested roll-out routine 400, then determines
whether the node includes a return pointer that would

US 6,597,809 B1

13

indicate completion of the parent candidate (step 440). If
not, then nested roll-out routine 400 advances to the next
node in the linked list (step 450) and returns to step 420. If
a parent node includes a nested matrix pointer to a nested
rollup matrix (at step 410) then nested roll-out routine 400
proceeds to store in memory an address of the parent node
that includes the nested matrix pointer (step 460). Nested
roll-out routine 400 then rolls out a child candidate from the
nested child matrix (step 470), and prepends the child
candidate to the parent candidate tail (step 480). Nested
roll-out routine then restores the address of the last-read
parent node, which was previously stored in memory and
returns to the parent rollup function (step 490), continuing
on at the last read parent node.

When a parent node includes a return pointer (step 440),
nested roll-out routine 400 completes its assembly of parent
candidate and processes it using dictionary process 500. If
the parent candidate passes the dictionary test, it is output.
Nested roll-out routine 400 can be repeated for each terminal
node of parent roll up matrix to complete roll out of all
parent candidates.

It will be obvious to those having skill in the art that many
changes may be made to the details of the above-described
embodiments of this invention without departing from the
underlying principles thereof. The scope of the present
invention should, therefore, be determined only by the
following claims.

What is claimed is:

1. A computer-implemented method of organizing a series
of sibling entities for facilitating on-demand production of a
ranked parent candidate of the series of sibling entities, each
of the sibling entities comprising one or more child possi-
bilities having an associated child confidence, the ranked
parent candidate including one or more component
elements, each component element consisting of one of the
child possibilities selected from one of the sibling entities,
the ranked parent candidate having a parent rank represent-
ing an aggregate of the child confidences associated with the
child possibilities that comprise the component elements of
the ranked parent, the method comprising:

(a) receiving a series of sibling entities including a first
sibling entity and a last sibling entity;

(b) establishing a rollup matrix in a computer-readable
data storage medium, the rollup matrix having a matrix
height and a matrix width, the rollup matrix including
multiple columns spanning the matrix width and mul-
tiple rows spanning the matrix height, each row having
a row position along the matrix height; and

(c) loading the rollup matrix with the series of sibling
entities in a predetermined loading sequence starting
with a first-loaded column of the rollup matrix and
ending with a last-loaded column of the rollup matrix,
the loading of the rollup matrix including:

i) storing the first sibling entity in the first-loaded
column, including storing each child possibility of
the first sibling entity in one of the rows, the row
position of said row corresponding to the child
confidence associated with the child possibility
being stored,

ii) in an unfilled column of the rollup matrix immedi-
ately following a previously-loaded column in the
loading sequence, for each loaded row of the
previously-loaded column in which a child possibil-
ity has been stored, storing in the unfilled column a
next one of the sequential sibling entities including
storing each of its child possibilities in the matrix

5

10

20

25

30

35

40

50

55

60

65

14

rows having row positions equal to the sum of the
row position of the loaded row of the previously-
loaded column and the child confidence associated
with said child possibility being stored,

iii) repeating step (ii) until the last one of the sequential
sibling entities has been stored in the last-loaded
column of the rollup matrix, whereby the row posi-
tion of each row of the last-loaded column contain-
ing one of the child possibilities corresponds to the
parent rank of at least one ranked parent candidate
that includes said one of the child possibilities.

2. The method of claim 1 in which each sibling entity has
a child population representing the total number of child
possibilities and in which the rollup matrix is established
with a matrix depth equal to the largest of the child popu-
lations of the sibling entities.

3. The method of claim 1 in which:

receiving the series of sibling entities includes receiving

a predetermined number of sequential sibling entities,
each sequential sibling entity having a predetermined
number of child possibilities, a maximum child
confidence, and a position, one or more of said sibling
entities having a largest number of child possibilities;
and

establishing the rollup matrix includes establishing a

rollup matrix having a matrix height corresponding to
the sum of the maximum child confidences of the
received sibling entities, a matrix width corresponding
to the predetermined number of sequential sibling
entities, and a matrix depth corresponding to the largest
number of child possibilities, the rollup matrix includ-
ing multiple columns spanning the matrix width, mul-
tiple rows spanning the matrix height, and multiple
tiers spanning the matrix depth.

4. The method of claim 1 in which:

at least one of the sibling entities includes a character

possibility set, the character possibility set including

character possibilities having associated character con-
fidences; and

the ranked parent candidates include candidate strings.

5. The method of claim 1 in which:

at least one of the sibling entities includes an alt-set, the

alt-set including candidate n-grams having associated

n-gram confidences.

6. The method of claim 5 in which the candidate n-grams
are 2-grams.

7. The method of claim 5 in which the candidate n-grams
are 3-grams.

8. A method in accordance with claim 1 in which:

establishing the rollup matrix includes establishing a

nested child matrix of the rollup matrix; and

at least one of the sibling entities includes a child possi-

bility represented by a pointer to an entry point of the

nested child matrix.

9. A computer-implemented method of organizing a series
of sibling entities for facilitating on-demand production of a
ranked parent candidate of the series of sibling entities, the
ranked parent candidate including one or more component
elements, each component element consisting of one of the
child possibilities selected from one of the sibling entities,
the ranked parent candidate having a parent rank represent-
ing an aggregate of the child confidences associated with the
child possibilities that comprise the component elements of
the ranked parent candidate, the method comprising:

(a) receiving a series of sibling entities S,,S, g, each

of the sibling entities comprising one or more child

US 6,597,809 B1

15
possibilities CP; having an associated child confidence
CF,, where i=1 .. . m;

(b) establishing a rollup matrix in a computer-readable
data storage medium, the rollup matrix having a matrix
height and a matrix width, the rollup matrix including
a series of columns COL,, COL,, . . . COL,, spanning
the matrix width and a series of rows R;, R,. . . R

p
spanning the matrix height and located at respective
row positions H=1, H=2, . . . H=p along the matrix
height; and

(c) loading the rollup matrix with the series of sibling
entities in a predetermined loading sequence starting
with COL, and ending with COL,,, the loading of the
rollup matrix, including the steps of:

i) storing S, in COL,, including, for i=1, 2 . . . m,
storing each child possibility CP; of S; in one of the
rows R, where H=CF,

ii) initializing a variable j so that j=1,

iii) incrementing j by 1,

iv) for each loaded row R, of the previously-loaded
column COL,_, in which a child possibility has been
stored, in which the row position of R is F, storing
in COL, the corresponding sibling entity S; including
storing each of its child possibilities CP, in matrix
rows Ry, having row positions H,=F+CF, for k=1,
2, ...q, where CF, is the child confidence associated
with child possibility CP,, and

v) repeating steps (iii) and (iv) until the last one of the
sequential sibling entities (S,,) has been stored in the
last-loaded column (COL,,) of the rollup matrix,

whereby the row position of each loaded row of the last-
loaded column (COL,) containing one of the child possi-
bilities corresponds to the parent rank of at least one ranked
parent candidate that using includes said one of the child
possibilities.

10. The method of claim 9 in which each sibling entity has
a child population representing the total number of child
possibilities and in which the rollup matrix is established
with a matrix depth equal to the largest of the child popu-
lations of the sibling entities.

10

15

25

30

35

16
11. The method of claim 9 in which:

receiving the series of sibling entities includes receiving
a predetermined number of sequential sibling entities,
each sequential sibling entity having a predetermined
number of child possibilities, a maximum child
confidence, and a position, one or more of said sibling
entities having a largest number of child possibilities;
and

establishing the rollup matrix includes establishing a
rollup matrix having a matrix height corresponding to
the sum of the maximum child confidences of the
received sibling entities, a matrix width corresponding
to the predetermined number of sequential sibling
entities, and a matrix depth corresponding to the largest
number of child possibilities, the rollup matrix includ-
ing multiple columns spanning the matrix width, mul-
tiple rows spanning the matrix height, and multiple
tiers spanning the matrix depth.

12. The method of claim 9 in which:

at least one of the sibling entities includes a character
possibility set, the character possibility set including
character possibilities having associated character con-
fidences; and

the ranked parent candidates include candidate strings.

13. The method of claim 9 in which:

at least one of the sibling entities includes an alt-set, the
alt-set including candidate n-grams having associated

n-gram confidences.
14. The method of claim 13 in which the candidate

n-grams are 2-grams.

15. The method of claim 13 in which the candidate

n-grams are 3-grams.

16. A method in accordance with claim 9 in which:

establishing the rollup matrix includes establishing a
nested child matrix of the rollup matrix; and

at least one of the sibling entities includes a child possi-

bility represented by a pointer to an entry point of the
nested child matrix.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. :6,597,809 Bl Pagelof 1
DATED : July 22, 2003
INVENTOR(S) : David Justin Ross, Stephen E. M. Billester and Brent R. Smith

It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

Title page,
Item [54], “ROLLUP FUNCTIONS FOR EFFICIENT STORAGE

PRESENTATION AND ANALYSIS OF DATA” should read -- ROLLUP
FUNCTIONS FOR EFFICIENT STORAGE, PRESENTATION, AND ANALYSIS
OF DATA -- (insert commas).

Column 1
Line 45, ““(425) 867-0700”” should read -- “(425) 867-0700.” -- (insert period).

Column 6
Line 64, “these-problems” should read -- these problems --.

Column 9
Line 19, “R4, and RS” should read -- R4, and RS --;
Line 58, “possibility, “h” at node” should read -- possibility, “n” at node --.

Column 12
Line 28, “ensure” should read -- ensures --;
Line 46, “matrix 260 also” should read -- matrix 260 is also --.

Column 13
Line 20, “matrix to complete” should read -- matrix 260 to complete --.

Column 14
Line 66, “S1, Ss,...qn,” should read -- S4, S,,...S; --;

Column 15
Line 34, “that using includes” should read -- that includes --.

Signed and Sealed this

Twenty-eighth Day of October, 2003

JAMES E. ROGAN
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specifications
	Claims
	Correction

